Power Electronics & Converters

“Power Electronics is paving the way for the future global electrical grid. At SuperGrid Institute, we develop innovative technologies that are reliable, efficient and cost-effective to bring this network of electricity to life.”
Loïc Leclere, Department Director – Power Electronics & Converters
The Power Electronics and Converters department develops innovative power conversion solutions for HVDC and MVDC applications. In HVDC we focus on solutions for electricity transmission networks covering AC/DC and DC/DC converters, large buffer storage systems, and power flow controllers. In MVDC we study and develop technologies for distribution networks, with a focus on protection, DC/DC converters, and energy storage systems.
The department conducts research on topologies and controls for power converters and their associated technologies, such as medium frequency transformers, silicon carbide (SiC) components and switching cells. Other research topics include condition and health monitoring, as well as digital twin modelling applied to power converters.


Advanced testing facilities enable us to perform full characterisation tests on power components up to many kVolts and kAmps, as well as back-to-back converter testing combined with a 100 kW deionised water cooling heat exchanger.
Our research includes:
Recent publications
North Sea Wind Power Hub pre-FEED study: DC Control Functional Requirements and Parameter Ranges for HVDC Building Blocks
This paper addresses several key DC grid control functional requirements.
North Sea Wind Power Hub pre-FEED study: DC Protection Functional Requirements and Parameter Ranges for HVDC Building Blocks
A methodology to define functional requirements and parameter ranges for HVDC building blocks such as converters and switching stations based on Simplistic Test Benchmarks (STB).
Wind Power Hub pre-FEED study: HVDC grid active power loss and restoration requirements based on AC frequency stability assessment
In order to decarbonize the European electricity production, the European Commission set an ambitious target of 300 GW of offshore wind capacity by 2050.