Design considerations for the 2- phase cooling system of a 5 MW MVDC converter

2021-08-11T16:57:57+02:00October 11th, 2018|Electronique de puissance & convertisseurs, Publications|

This presentation will provide an update on our current project: designing a cooler for a high power (5 MW) MVDC converter for offshore wind turbines applications. A number of constraints are imposed, mainly related to a limited volume, environmental, safety and health regulations, and of course cooling performance. Indeed, as we presented last year (ATW 2017), the silicon carbide power semiconductors used in this converter should operate at a junction temperature lower than 100 °C for better efficiency.

Measurement and Analysis of SiC-MOSFET threshold voltage shift

2021-08-11T17:37:46+02:00October 4th, 2018|Conference, Electronique de puissance & convertisseurs|

Gate-oxide technology weakness is a main reliability issue of Silicon Carbide MOSFET transistors. The threshold voltage shift is a critical phenomenon that addresses the reliability of industrial power applications. It is important to have a better understanding of the phenomena implied in the gate threshold voltage shift. In this context, HTGB test is proposed and the resulting gate oxide stress is studied and discussed in this paper.

PhD Etienne OUSS “Characterization of Partial Discharges and Defect Identification in High-Voltage Direct Current GIS”

2021-08-11T17:42:53+02:00September 25th, 2018|Appareillage électrique haute tension, Phd, Tout|

This thesis aimed to characterize partial discharges in DC gas-insulated substations, and to develop an automatic defect identification tool. The first step of this work was the development of a partial discharge measuring bench. The complete study has been performed in a GIS section, so that the results can be directly applied to industrial equipment.

Analysis of the Lower Limit of Allowable Energy in Modular Multilevel Converters

2024-10-09T10:36:21+02:00September 21st, 2018|Architecture & systèmes du supergrid, Publications|

In this paper, a thorough analysis of the converter arm behavior is presented, which gives an analytic expression of the lower limit of the energy as a function of the converter operating point and the connected grid conditions. The relation between the lower energy limit and the operating power is analyzed by using the practical MMC specifications of an HVDC application. An experimental test of a small-scale MMC mock-up demonstrates the validity of the theoretical analysis.

Go to Top