FMEA of a non-selective fault-clearing strategy for HVDC grids

2021-08-11T16:55:33+02:00February 7th, 2019|Architecture & systèmes du supergrid, Publications|

The Failure Mode Effect Analysis (FMEA) is a technique used to investigate failures in a process or component and to identify the resultant effects of these failures on system operations. In this paper it is explained how the FMEA can be used to define and assess the impact of the failure modes (FM) of a protection strategy for High Voltage Direct Current (HVDC) grids.

Study of the impact of DC-DC converters on the protection strategy of HVDC grids

2021-08-11T16:55:54+02:00February 7th, 2019|Electronique de puissance & convertisseurs, Publications|

This paper studies the role of DC-DC converters in the protection of HVDC grids acting as firewalls to stop the propagation of faults. The effects of blocking the converter or actively controlling its operation during faults are presented.The results demonstrate the capabilities of DC-DC converters beyond DC voltage transformation.

25 kV-50 Hz railway power supply system emulation for Power-Hardware-in-the-Loop testings

2021-08-11T16:56:14+02:00January 8th, 2019|Electronique de puissance & convertisseurs, Publications|

This paper presents a methodology to consider the impedance of a grid in power hardware in the loop (PHIL) experiments to validate power converter control in presence of harmonics or resonances in the network impedance. As the phenomena to emulate are in a large frequency range, the skin effect in conductors has to be taken into account. A procedure is developed to model the network.

Modelling of a 25 kV-50 Hz railway infrastructure for harmonic analysis

2021-08-11T16:56:29+02:00December 20th, 2018|Electronique de puissance & convertisseurs, Publications|

This paper presents a methodology for the modelling of a 25 kV-50 Hz railway infrastructure, for frequencies from 0 to 5 kHz. It aims to quantify the amplifications of current and voltage harmonics generated by on-board converters into the infrastructure. A circuit is developed to model the skin effect in the overhead line for time-domain simulations. A new approach, based on state space representation and transfer functions, is also proposed to analyse the interactions between trains.

PhD Quentin MOLIN “High Voltage SiC MOSFET Robustness study: threshold voltage shift and short-circuit behaviour”

2021-08-11T17:42:45+02:00December 17th, 2018|Electronique de puissance & convertisseurs, Phd|

This manuscript is a contribution to reliability and robustness study of MOSFET components on silicon carbide “SiC”, wide band gap semiconductor with better characteristics compared to silicon “Si” material. Those new power switches can provide better switching frequencies or voltage withstanding for example in power converter. SiC MOSFET are the results of approximately 10 years of research and development and can provide increased performances and weight to some converter topology for high voltage direct current networks.

SuperGrid Institute’s project selected for Grid2030

2021-08-11T16:30:13+02:00December 6th, 2018|Architecture & systèmes du supergrid, Evenement|

SuperGrid Institute and IMDEA joint forces with the support of REE, and created a consortium. This consortium was selected from more than 80 projects. Through the "Reduced Inertia Transient Stability Enhancement" (RITSE) project, SuperGrid Institute will strive to improve the transient stability of the AC networks by coordinating the use of batteries and HVDC links.

Go to Top