SuperGrid Institute’s participation in PROMOTioN’s Work Package 9

2019-07-26T09:40:10+02:00mai 22nd, 2019|Architecture & systèmes du supergrid|

SuperGrid Institute is proud to have been an active participant in the PROMOTioN project since 2016. This project is part of the European Union’s Horizon 2020 program and is made up of several work packages (WP) that share a common aim: developing meshed HVDC offshore grids that are both cost effective and reliable, through technological innovation. SuperGrid Institute is an active member of several Work Packages, including WP9 whose objective is to develop fault clearing strategies using Hardware-in-the-Loop (HIL) real-time simulation (RTS).

Structural Analysis and Modular Control Law for Modular Multilevel Converter (MMC)

2019-07-26T09:40:11+02:00mai 21st, 2019|Electronique de puissance & convertisseurs, Publications|

This paper proposes an in-depth analysis from the control point of view of dynamic models of a Modular Multilevel Converter (MMC) for high-voltage direct current (HVDC) application. Firstly, a generic method of analysis is presented for a natural arm-level state-space model. Its structural analysis highlights the decoupled nature of the MMC. Secondly, the well-known sum and difference of the upper and lower arm state and control variables is considered to obtain a (S/D) model. This transformation leads to a coupling between state and control variables and to an increase of the system complexity. Using the analysis results of the natural model and the (S/D) model, an original arm-modular control is finally proposed. The simulation results show the effectiveness of the proposed control, which is simpler to design compared to a conventional (S/D) control.

SuperGrid Institute at PCIM Europe 2019

2019-07-26T09:40:12+02:00mai 13th, 2019|Electronique de puissance & convertisseurs, Evenement|

This year, for the first time our presence at PCIM Europe 2019, was noticeable with our stand from 6th to 9th May. At the conference, and as power electronics is at the heart of our innovations, SuperGrid Institute was invited to present during the « Smart Transformers » special session.

Power electronic traction transformers in 25 kV / 50 Hz systems: Optimisation of DC/DC Isolated Converters with 3.3 kV SiC MOSFETs

2019-07-26T09:40:12+02:00mai 9th, 2019|Electronique de puissance & convertisseurs, Publications|

In AC electric trains, power electronic traction transformers (PETT) are multilevel single phase AC/DC converters connected to the AC medium voltage overhead line. For indirect topologies, DC/DC isolated converters are key elements of PETTs. This paper shows a method to design such DC/DC converters, and several variants are considered. Finally, the comparison results, in the case of a 25 kV / 50 Hz power supply and 3.3 kV SiC MOSFETs, show that the variant with a resonant AC link, with only one controlled bridge and a switching frequency lower than the resonant frequency, offers the best efficiency at rated power for a given volume.