New challenges for High Voltage transmission

2023-01-31T13:35:57+01:00May 15th, 2019|Appareillage électrique haute tension, Publications|

In able to fully integrate renewable energies and to stop to use fossil energy and nuclear power, there is a need to evolve the current electric grid in a new one called the supergrid. This new grid will be based on a mix of High Voltage AlternativeCurent (HVAC) and High voltage Direct Current (HVDC) junctions highly meshed with Gas Insulation Substation (GIS) as nodes. While HVAC GIS technologies are well mastered, HVDC ones are still at the beginning. One weakness of the equipment being dielectric insulators, industries may have to conceive new dielectric formulations or improved ones. This paper presents a list of properties and values to target for future dielectrics formulation. At the end, it highlights as well, the importance of health and environnement and how their consideration have to be at the same level of attention than the final properties of the dielectrics.

Power electronic traction transformers in 25 kV / 50 Hz systems: Optimisation of DC/DC Isolated Converters with 3.3 kV SiC MOSFETs

2019-06-03T18:19:45+02:00May 9th, 2019|Power Electronics & Converters, Publications|

In AC electric trains, power electronic traction transformers (PETT) are multilevel single phase AC/DC converters connected to the AC medium voltage overhead line. For indirect topologies, DC/DC isolated converters are key elements of PETTs. This paper shows a method to design such DC/DC converters, and several variants are considered. Finally, the comparison results, in the case of a 25 kV / 50 Hz power supply and 3.3 kV SiC MOSFETs, show that the variant with a resonant AC link, with only one controlled bridge and a switching frequency lower than the resonant frequency, offers the best efficiency at rated power for a given volume.

Power electronic traction transformers in 25 kV / 50 Hz systems: Optimisation of DC/DC Isolated Converters with 3.3 kV SiC MOSFETs

2021-08-11T16:54:55+02:00May 9th, 2019|Electronique de puissance & convertisseurs, Publications|

In AC electric trains, power electronic traction transformers (PETT) are multilevel single phase AC/DC converters connected to the AC medium voltage overhead line. For indirect topologies, DC/DC isolated converters are key elements of PETTs. This paper shows a method to design such DC/DC converters, and several variants are considered. Finally, the comparison results, in the case of a 25 kV / 50 Hz power supply and 3.3 kV SiC MOSFETs, show that the variant with a resonant AC link, with only one controlled bridge and a switching frequency lower than the resonant frequency, offers the best efficiency at rated power for a given volume.

Go to Top