

SuperGrid Institute

HVDC links control to enhance stability and security of power systems

Dr. Abdelkrim BENCHAIB, R&D Expert Manager

Power transmission in Asia - Dec. 08, 2020

SuperGrid Institute

In a nutshell

SuperGrid Institute, an independent research & innovation center developing key technologies for future electricity grids

SuperGrid Institute

- Independent Research & Innovation centre
- Academic & industrial experts and testing facilities all in one place
- Supported by the French State and with academic & industrial shareholders

Key figures:

- Created in 2014, located at Villeurbanne (Lyon), France
- Around 200 team members, mainly applied research staff
- More than 10 simulation & testing facilities
- More than 63 patent applications & 120 publications
- Active member of major scientific leadership groups: CIGRE, IEC, IEEE...

SuperGrid Institute, an independent research & innovation center developing key technologies for future electricity grids

01 Upgrading electrical grids

Reinforcing the existing transmission system and interconnecting networks to enable the transmission of a huge quantity of power over long distances \rightarrow DC technologies & systems, and integration within AC grids

02 Integrating renewables

Connecting renewable energy sources while managing their impact on the electrical network (decreasing inertia and intermittence)

SuperGrid Institute, an independent research & innovation center developing key technologies for future electricity grids

 \odot

Expected evolution of HVDC grids

New insulating materials

SuperGrid Institute, an independent research & innovation center developing key technologies for future electricity grids

SuperGrid Institute: An independent research and innovation centre covering the full technological chain shaping the grids of the Future

6

SuperGrid Institute, an independent research & innovation center providing HVDC & MVDC innovations and services to our clients

SuperGrid Institute's value proposition to our clients

SuperGrid Institute value propositions

SuperGrid Institute, an independent research & innovation center providing HVDC & MVDC innovations and services to our clients

Come to us and we will set up together the most efficient way to collaborate, such as:

- Joint R&D long-term collaboration
- Short-term specific R&D joint collaboration
- Licensing and/or joint maturation of <u>SuperGrid Institute innovations portfolio</u>
- External collaborative research project (EU funding, etc.)
- Services subcontracted to SuperGrid Institute:
 - Subcontracted R&D
 - Testing at SuperGrid Institute facilities
 - Access to expertise through technical consulting services
 - Grid studies

For any inquiry, please feel free to contact us directly or through our website :

www.supergrid-institute.com

SuperGrid Institute

HVDC links control to enhance stability and security of power systems

What evolution for transmission grid?

- Wind energy is the technology expected to provide the largest contribution to the EU renewable energy targets for 2020 and beyond.
- The EU currently has the largest floating wind energy capacity in the world about 70% of the total.
- By end 2020, the total installed wind energy capacity could reach 210GW, equivalent to supplying 14% of electricity demand.
- By 2030 it could reach 350GW, supplying up to 24% of electricity demand.
 https://ec.europa.eu

Implications of Poor FFR Location

Example Extreme Behaviour during a frequency event

Source:

Enhanced Frequency Control Capability Project Dissemination Event. Wide-Area Frequency Control Scheme Smart Frequency Control Douglas Wilson & Seán Norris 25/02/2016 http://docplayer.net/98563887-Enhanced-frequency-control-capabilityproject-dissemination-event.html

Wind Energy flow in Germany

Energy transition - supply security

2015: Redispatch in high wind (1)

Germany's energy future....

- Long distances between generation and use
- Power transmission up to 800 km
- European internal electricity market and trading
- Large volume of fluctuating renewable generation
- ... is already here!

HVDC links in Europe, Existing and planned

Partners for ULTRANET converters: Amprion GmbH / TransnetBW GmbH / Siemens AG

Context of embedded HVDC links – Transient stability highlight

Potential of HVDC grids for rotor angle stability improvement

Transient stability : The ability of the power system to maintain synchronism when subjected to a severe disturbance, such as a short circuit on a transmission line

Conclusions Part 1

Bulk power transmission impact on AC transient stability

Transient stability is one limiting factor of bulk power transmission over long AC lines.

HVDC transmission is a suitable solution for the AC grid reinforcement.

HVDC can help to unload AC lines, however it does not intrinsically enhance transient stability: control actions are needed.

Supplementary controller for HVDC links

Dynamic Virtual Admittance Control – Derivation using feedback linearization

Analysis of the control law: Three main actions

$$\Delta P_{hvdc} = k_{\delta}(\delta_i - \delta_j) + k_{\omega}(\omega_i - \omega_j) + \text{Feedforward action}$$

- → Term 1: Synchronizing power (spring)
 - Power modulation in phase with power angle difference
- → Term 2: Damping power (damper)
 - Power modulation in phase with speed deviation
- → Term 3: Cancellation of nonlinearities and feedforward
 - Immediate compensation of the disturbances of the system (profit VSC fast response) – (different ways to perform this action)

[1] J. C. Gonzalez-Torres, V. Costan, G. Damm, A. Benchaib, and F. Lamnabhi-Lagarrigue, "Transient stability of power systems with embedded VSC-HVDC links: Stability margins analysis and Control." IET Generation, Transmission & Distribution (2020)

Limitations of the concept use:

- Need of representative model of the AC system
- Identification of weakly damped modes
- Availability of measurements: Angle, speed, powers...
- Observability (measurements)/controllability of the system (topological situation of the HVDC) 16

Dynamic Virtual Admittance (DVAC) control scheme

General concept

Using the DVAC, the power references are modulated with the objectives of:

- Transient stability enhancement
- Power Oscillations Damping
- Fast compensation of power disturbances
- Automatic modification of operating point after contingencies
- Synchronization in case of AC system trip
- Coordinated sharing of frequency reserves

EMT simulation results

Modified Kundur's two-area system

- Kundur's modified system with embedded bipolar HVDC link
 - Extra 550 MW generation in zone 2
 - Extra 200MW installed renewables
- EMT detailed simulations including Phasor Measurement Units models

EMT simulation results

Contingency 1 – Three phase fault

200ms three phase fault and line tripping

Compared control structures

- CR → Constant References
- POD $\rightarrow \Delta P_{hvdc} = k(\omega_1 \omega_2)$ Measurements at PCC [Latorre & Ghandari 2010]
- DVAC → Proposed control

EMT simulation results

Contingency 2 – Uncoordinated fast frequency response

Fast frequency response: power injection

Contingency:

- Under frequency scenario
- Loss of generator 5
- Activation of the FFR
- Angular distances increase to share the reserves

Use case: REE (Spain) – Grid2030 project

Coordinated sharing of frequency reserves

No FFR \rightarrow Stable in angular difference, but large frequency deviations

Area 1 - No Fast FCR	Area 1 - Fast FCR
——— Area 2 - No Fast FCR	Area 2 - Fast FCR

Use case: REE (Spain) – Grid2030 project

Coordinated sharing of frequency reserves

No FCR \rightarrow Stable in angular difference, but large frequency deviations

With FCR \rightarrow First swing transient stability is lost

www.ree.es/es/sostenibilidad/anticipacion-y-accion-para-el-cambio/programa-grid2C

Area 1 - No Fast FCR	Area 1 - Fast FCR
Area 2 - No Fast FCR	Area 2 - Fast FCR

Use case: REE (Spain) – Grid2030 project

Coordinated sharing of frequency reserves

No FCR \rightarrow Stable in angular difference, but large frequency deviations

With FCR \rightarrow First swing transient stability is lost

Oscillations in Continental Europe : December 2016

Incident description

- France imported 2250 MW from Spain
- 11h18Line 400 kV line Argia-Cantegrit tripped
- Undamped oscillations at 0.15 Hz appeared
- Corrective action
- Exchange from scheduled 2.250 MW to 1.000 MW
- 11h21: Oscillations start to be damped.

Source: Grid2030 RITSE Project

Oscillations in Continental Europe : December 2016

Incident description

- France imported 2250 MW from Spain
- 11h18Line 400 kV line Argia-Cantegrit tripped
- Undamped oscillations at 0.15 Hz appeared
- Corrective action
- Exchange from scheduled 2.250 MW to 1.000 MW
- 11h21: Oscillations start to be damped.

Investigated in RITSE Grid2030 project with REE (Spain)

Source: Grid2030 RITSE Project

https://www.ree.es/en/sustainability/anticipating-change-and-taking-action/grid2030-programme

Conclusions Part 2

HVDC links with constant references do not contribute to transient stability as an AC line can do.

Using the DVAC , embedded HVDC link contributes to:

- Increase transient stability margins
- Damp power oscillations
- Synchronize power systems even if there is no AC link
- Allow fast reallocation of the power distribution
- Power must be available in the converters to enhance stability margins
- Small signal stability AND transient stability are two separate problems. HVDC can provide solutions for both of them
- Those concepts have been extended to multi-terminal DC grids

References

[1] J. C. Gonzalez-Torres, V. Costan, G. Damm, A. Benchaib, and F. Lamnabhi-Lagarrigue, "Transient stability of power systems with embedded VSC-HVDC links: Stability margins analysis and Control." IET Generation, Transmission & Distribution (2020).

[2] J. C. Gonzalez-Torres, V. Costan, G. Damm, A. Benchaib, F. Lamnabhi-Lagarrigue and B. Luscan, *"Procède de commande d'un lien de transmission électrique incluant une ligne haute tension continu,"* (French patent), 2018. WO2019174999A1

[3] L. Coronado, C. Longas, R. Rivas, S. Sanz, J. Bola, P. Junco, and G. Perez. *"INELFE: main description and operational experience over three years in service,"* in 2019 AEIT HVDC International Conference (AEIT HVDC), 2019, pp. 1–6.

[4] J. C. Gonzalez-Torres, V. Costan, G. Damm, A. Benchaib, and F. Lamnabhi-Lagarrigue, "A novel distributed supplementary control of Multi-Terminal VSC-HVDC grids for rotor angle stability enhancement of AC/DC systems," ,IEEE Transactions on Power Systems, 2020.

Thank you for listening

Any questions?

Dr Abdelkrim BENCHAIB, SuperGrid Institute

R&D Expert Manager

Abdelkrim.BENCHAIB@supergrid-institute.com

28